Tags


Technology

Scientific Inquiry

Scientific Reasoning 

Mental Models


Problem Solving

Quantitative Approaches

 

Chemistry

 

 

Experiments


Areas


Modeling

Problem solving in Chemistry depends on subject related characteristics like having a concept of conducting experiments, creating mental representations of matter or combining structure and function.

The fundamental description of learning progressions of these topics is for T-CEL the basis to understand how students learn chemistry and which could be most suitable ways to support their learning. In quantitative studies T-CEL investigates the role of mental models for understanding a problem and the relationship to learner characteristics.


Assessment

The technical improvement offers opportunities to develop alternatives to paper and pencil related test formats in quantitative studies. Combined with elements of gamification T-CEL do research on  video based assessment tools for problem solving competence.

For assessing process related skills, e.g. while conducting an experiment, or complex group related interactions, e.g. in collaborative/team based problem solving, interactive test items and virtual environments are in the focus of research.  

 


Support

Support students' problem solving skills and seeking solutions to apply research in Chemistry education - to bridge the gap between theory and practice is the aim of this research area.

By designing technology based learning environments the effectiveness of different methods is investigated. In video clips of best practice examples or adaptive learning programs students at schools or in higher education participate in different research projects.

 


doctoral program


 In addition to the Master's degree, Tiemann Chemistry Education Research Lab offers the opportunity to be actively involved in research and obtain a PhD degree. As part of a larger working group, you have the opportunity to assume responsibility in a research area of our focus, exchange and discuss your ideas and to become an expert in your field!

 

You will acquire methodological competence in interdisciplinary summer schools and workshops, bring in your personality in the further development of our lab and build up a network that will open up a wide range of job opportunities for you in the future.

 

At T-CEL, a robust portfolio of theoretical background research, extensive planning of design and instruments and advanced statistical evaluation methods are characteristics for working on fundamental questions of problem based learning and mental models.

 

We offer a modern, strong PhD program of three to four years of full-time study, excellent working conditions and a close mentoring. We expect highly motivated team players, contributing to the growth of T-CEL vision by teaching, publishing and  - researching!

 


Running Projects


Fostering Scientific Inquiry

Problem based labwork activities for bachelor studies in analytical chemistry

Scientific Inquiry and Nature of Science are the most relevant constructs to describe a pedagogy that is internationally called Inquiry Based Science Education (IBSE). Students should learn the scientific way of thinking and rate scientific methods and results.

The aim of this project is to develop and to evaluate chemical exercises fostering students at BA level in analytical chemistry labwork to formulate scientific questions and hypotheses, plan and perform a scientific experiment and to analyse and interpret data. Learning the main features and limits of science, to estimate the meaning of results and the importance of the scope of cognitive models are important factors for the education of students. This project will give an impact, driven by educational research, in implementing an inquiry based science education on an early stage at university level. With the qualification of young scientists with cross curricular competencies, with the ability to analyse complex problems from different perspectives by case based learning, and with the ability to look for unconventional solutions, core elements of SALSA´s curriculum find their roots in this project.

 

Ines Sonnenschein, née Gerling

 

funded by "SALSA Graduate School" of the German Science Foundation (DFG)

 


Models as Tools for Scientific Reasoning

A learning progression of modeling in Chemistry

Models in general are well recognized as tools for acquiring knowledge, scientific reasoning and problem solving. Thus, models and modeling are an important part of science education. In chemistry, due to the nature of its original subject, models describe, explain, and predict objects and processes, which cannot be experienced directly. Scientific reasoning can be empirically described as the process of establishing a research question and formulating a hypothesis, planning and conducting an examination and evaluation and reflection of collected data.

Lesh et al. (2000) offered an analytical tool for analyzing models in the context of mathematics education and problem solving. They describe models to consist of elements, relations, operations, and rules. According to them elements are the smallest meaningful units in a certain model. Relations connect elements in terms of their properties. Operations are more process-oriented and are used for interactions between the elements, or a change of their relations (e.g. an electron changing its energetic state). Rules are the underlying logical assumptions for using the model in a specific situation. This project investigates quantitatively the suitability of this 12-dimensional structure for describing a learning progression of modeling in Chemistry.

 

Marvin Rost

 

funded by "ProLEA" of the German Science Foundation (DFG)



Alchemist - A Game Based Assessment Tool

Assessing Problem Solving by a gamification approach

Paper and pencil and computer based approaches are commonly used to assess different kinds of problem solving abilities. This project seeks to find alternative ways.  Gamification gives learners the opportunity to try new challenges in a simulated environment. It brings together the  motivational and inspiring characteristics of a game,  elements of instructional design and the necessary learning theory. 

Building on the gamification approach, the project idea specifically showcased the design of a video-game, based on the four scales of the problem-solving model with three levels of proficiency to investigate if this new application form is valid, not only for motivating and engaging students but also to assess the students’ performance in problem-solving competence in chemistry education.

 

Amany Annaggar

 

funded by "Inspring Scicence Education" of the European Union (EU)

 


Critical Thinking

Fostering a 21st century skill in a graduated lab work course

 Critical thinking is actively reflecting upon one’s own experience and knowledge and searching for necessary information in the process of inquiry. Shifting science teaching from the rote-passive-learning to using critical thinking skills as a primary component in facilitating learning, is necessary for inquiry-based learning and for making reasoned argumentation in science. This study focuses on a physical chemistry undergraduate lab course and aimes at examining whether cognitive prompts in the context of CT enhance students’ CT-skills and CT-dispositions. Cognitive prompts were added to the original laboratory manual of the course. The qualitative study was conducted within a pre- and post-experimental design using the California Critical Thinking Disposition Inventory (CCTDI) and the California Critical Thinking Skills Test (CCTST) as dependent variables.

 

Lilian Danial

 

funded by "SALSA Graduate School" of the German Science Foundation (DFG)

 



Mental Modells of Problem Characterizations

A theoretical approach to describe the first step ... 

The perception and processing of information from reality always takes place against the background of existing or to be formed internal cognitive structures. These so-called "mental models" thus form the core for insights of understanding processes and are the starting point for the successful handling of a problem situation. 

The project quantitatively examines the internal structure of mental models that are formed in various situations of pupils in lower secondary school and that are initially phenomenologically represented. The representations are dynamic in order to take the process character of chemical processes into account and are supplemented by particulate or iconic representations. In the experimental design a "situational mental modeling building approach"(SIMBA) is used, which postulates a structure out of theory and enables conclusions to be drawn about the internal structure of the mental models from their externalizations. The aim is to trace the quality of externalization and thus of the underlying mental models for both forms of representation back to characteristics of their internal structure and make them in future accessible for a targeted, supporting learning environment.

 

Katharina Nave

 

supported by "ProLEA" of Humboldt-University

 


Inclusive  Chemistry Teaching and Problem Solving

A model fo inclusive chemistry teaching

The acquisition of scientific knowledge through problem solving offers the possibility to consider different requirements of an inclusive chemistry lesson. The research project is explicitly based on the original, broader concept of inclusion. The theoretical model derived from the theory takes into account a differentiation both, for lower achievers and for higher performers and, in addition to domain-specific characteristics, also takes up general criteria for teaching that is perceived as good. The architecture of the "model for inclusive chemistry teaching" (MiC) is designed in particular in such a way that teachers can derive concrete, planning-guiding assistance for teaching from it. In order to test these two aspects, the "broad" inclusion and the instruction for teachers in everyday school life, an exemplary teaching unit will be designed and quantitatively tested with approx. 10 classes of the secondary level I. The teaching unit will be designed in accordance with the following guidelines. Among other aspects, situational questionnaires are used to record the perceived fit of the teaching offer with the individual performance of the individual pupils, supplemented by guideline-based interviews with teachers.                                                               

 

Joachim Kranz 



Cognitive Load of Experiments

Problem based labwork activities for bachelor studies in analytical chemistry

Conducting a scientific investigation in Chemistry belongs to conceptual knowledge as well as to practical skills. The adequate use of chemicals, the correct assembly of flasks or the proper performing of a titration is not directly linked to meaningful learning. Following the cognitive load theory, these activities could be an important part of the extraneous load and reduce the capacity of the intrinsic load - necessary for learning the concept behind  the experiment.  This project compares   students´ conceptual understanding while conducting an experiment by themselves or only watching a video of an experiment of the same topic.

 

Angela Hohlstein


Problem Based Learning of Chemistry Education

Digital tools for Chemistry Education in Higher Education

The demands on future chemistry teachers are becoming increasingly challenging, as the competences and skills of abstractness and complexity to be imparted to students at schools also increase (see 21st Century Skills). At the same time, however, the possibilities for shaping university teaching are also increasing in order to organize university teaching in a modern way and according to the latest findings of research on teaching and learning. 

Based on a flipped-claasroom approach, the research project will conceive digital environments for teacher students of chemistry (BA), which, for example, contain video excerpts from real teaching situations to illustrate educational problem situations, or which contain explanatory videos to illustrate and summarize science education teaching approaches. Various tools for cooperative collaboration complement the environments, which on the one hand are developed for the introduction to Chemistry Education. On the other hand, in cooperation with the project "Gendering MiNT digital - Open-Science aktiv gestalten" (Prof. Dr. Sigrid Schmitz, HUBerlin) from the Federal Ministry of Education and Research (BMBF), a deepening of the topic "Nature of Science" will take place.

 

Simon Schäfer



Translation of Chemical Representations

Developing a Model of Factors Influencing Translation Performance

Chemical processes can largely only be explained at the molecular level and are therefore not directly observable. Consequently, external representations are essential to describe and explain phenomena, contexts and processes, and to make them available for a scientific discourse. For chemistry, symbolic and particulate representations of chemical facts are the predominant forms of representation when it comes to the exploring or communication of content. In addition, with the increasing technical possibilities, three-dimensional representations - static and animated - are also increasing in addition to two-dimensional representations. This makes it all more important that pupils are able to switch between different forms of representation. This translatability, i. e. the ability to translate different external representations into each other, is crucial for the development of a basic understanding of chemical phenomena and contexts.

 At the same time, it seems to play an important role in solving problems and is based, among other things, on cognitive flexibility, i. e. the ability to select a suitable representation for the situation in question. Cognitive flexibility is complicated by functional fixation, i. e. the sole assignment of one or very few characteristics or situations to an entity. Thus the representations remain isolated and only applicable to the respective situation. An application in a different situation than the original one is very rarely observed in class, and the factors that determine translation in detail have hardly been investigated to date.

This research project investigates quantitatively for secondary level II which cognitive factors are related to students' ability to translate and to what extent structural characteristics of representations determine the inter- and intra-representative translation distance.

 

Tina Grottke


Get in touch

Humboldt-Universität zu Berlin

Department of Chemistry

Brook-Taylor Str. 2

12489 Berlin

Library opening hours

Newton-Str. 14

Room 3´05 

Mon, Wed, Thu    9:30am-11:00am

Fri  1:00pm-2:30pm

Office hours

term:            2. & 4. Wednesday, 8:00-9:00am

                        Registration required  by E-Mail

                       

off-term:     by appointment